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Introduction
o Hybrid HDVs with electric power zero-emissions

o Involve battery energy storage supplying electric vehicle

o In conjunction with other power sources, e.g. Fuel Cells

o Green revolution highlights importance of batteries and Battery Management Systems
(BMS) in transport applications

o Development of estimators is critical aspect of BMS design
o Algorithms compute estimates of battery characteristics that are unmeasurable

o E.g. for battery equivalent capacity, battery resistance & battery State-of-Charge (SoC)

o BMS estimator design is complex and time-consuming task

o Due to variety of battery technologies, architectures, and uncertainties

o Several data-driven and combined data-driven/model-based methods have been

proposed to solve BMS SoC estimation problem

o Including Neural Network (NN), Fuzzy Logic, KF-based algorithms, combining ML and

model-based approaches
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Philosophy

o Purely data-driven design methodology to perform battery estimation
o Focus is on battery State-of-Charge (SoC) estimation problem
o Method combines modern data-driven Least-Squares Support Vector Machine (LS-

SVM) with data pruning procedure for efficient computations
o Method uses Particle Swarm Optimization (PSO) to tune algorithm

o Pruning method selects important samples from training dataset
o Reduces computational complexity and memory footprint of algorithm
o Whilst maintaining performance

o Dataset collected by emulating battery using Enhanced Self-Correcting
(ESC) battery simulation model
o Baseline estimator was also developed for comparison with model-based approach

o Extended Kalman Filter (EKF)
o Estimators compared in simulation

o In terms of performance and computational complexity
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Battery Model

Battery State-of-Charge
SoC of i-th battery cell is defined as:

௜
 ఏ(௞)ିఏబ%

ఏభబబ%ିఏబ%

where is average lithium concentration stoichiometry at discrete-
time defined as:

௦,௔௩௚,௞

௦,௠௔௫

This should remain between 0% and 100%
Although possible to violate limits in over-discharge or over-charge situation
Presently no way to measure concentrations to calculate stoichiometries and SoC
Therefore necessary to infer or estimate SoC using only measurements of cell terminal
voltage, current, and temperature
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Data-Driven SoC Estimator

Pruning Procedure

One of main issues in LS-SVM identification is size of training dataset
Estimate is computed iteratively by comparing training dataset information with
measurements from real system
Two issues:

1) Computational burden increases with dataset size; when training dataset is large,
iterative computation of estimate can be prohibitive in real-time;

2) To use LS-SVM on real systems, training data must be stored in memory, reducing
possibility of porting algorithm onto hardware with limited resources

Possible solution for reducing training dataset size is so-called pruning method
Method involves iteratively performing LS-SVM identification, reducing training
dataset size at each iteration
By gradually omitting least significant training data

Lowest Lagrangian multipliers

Method allows a priori definition of maximum size of data subset to consider
Or equivalently, acceptable value of identification performance degradation
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Data-Driven SoC Estimator

Pruning Procedure

1) Considering original dataset of size & train LS-SVM
2) Remove number of points (e.g. of ) corresponding

to smallest values in ௞ (data point ‘influence’) spectrum

3) Train LS-SVM with new reduced dataset

4) Return to point 2 until identification performance degradation 
threshold is exceeded
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Data-driven SoC Estimator

Data-Driven Design Procedure

Data-driven estimator design is based on ML and statistical methods

To limit computational complexity, following design procedure was
defined:
 Phase 1: Perform first LS-SVM training based on PSO & original

training dataset to compute estimator calibration parameters
 Phase 2: Perform Pruning Analysis with calibration parameters of

Phase 1 & select pruned dataset size to consider for final estimator
training

 Phase 3: Perform final LS-SVM training
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Data-driven SoC Estimator Design Tool
Design approach is implemented in Data-driven Estimator Design Tool

Developed by ISC to simplify development
Software generates data-driven estimator

Includes tuning parameters for training and pruning procedure
GUI provides feedback to user

Estimation/pruning graphical results & identification of performance statistics
GUI shows inclusion of set of common data manipulation methods e.g. data
normalization & Entropy-based Analysis
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Performance Criteria

Performance indices to compare estimators:
o Mean Absolute Error (MAE)

o Root Mean Square Error (RMSE)

o Execution Time (ET) in seconds
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Estimators Comparison
Data-driven estimator design: Phase 2

 In Phase 2, pruning was applied to dataset from Phase 1
 Figure: Result of analysis with averaged fitting error with respect to size

of selected dataset, plus normalised averaged execution time
 Analysis enables evaluation of trade-off between fitting error increase

and related execution time reduction
 From this, size of pruned dataset for Phase 3 is selected as 5000 samples
 Reduces computational burden by 50%, with expected 12% increase of

fitting error
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Estimators Comparison

Performance of data-driven estimator vs. baseline EKF

Figure: estimator performance for scenario with SoC varying from 100% to 50%

MAERMSEEstimator
4.8496 × 10ିଷ5.1049 × 10ିଷEKF
2.9855 × 10ିଷ4.7922 × 10ିଷLS-SVM
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Conclusions

o Battery State-of-Charge (SoC) estimation method developed

o Exploiting capabilities of data-driven Machine Learning (ML) techniques

o Approach/tool can be used for more general applications

o Combines Least-Squares Support Vector Machine (LS-SVM) identification
technique with Pruning Dataset Selection procedure

o Uses Particle Swarm Optimization (PSO) method

o Automatic procedure combining these techniques has been developed and
implemented within Data-driven Estimator Design Tool

o Developed to reduce effort in battery estimation

o Estimator approach achieves good performance with limited computational
complexity

o Performance of algorithm compared against baseline EKF estimator

o Results demonstrated that proposed estimator overcame limitations of
model-based methods whilst reducing computational burden


