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Background Results and Discussion
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ne S udy claime a . © can .e ger_1era © om a Figure 3: Fluid inlet (Tin) and outlet (Tout) Figure 4: Rock temperatures for 800 kW load.
well in Texas, US (Davis and Michaelides, 2009); others temperatures for 800 kW load.

Investigated 6 km abandoned oil wells for geothermal power
generation recording a net electrical power of ~134 kW (Cheng et
al., 2013; Alimonti and Soldo, 2016).

 What thermal power is obtainable in Glasgow using a 6 km

borehole? Table 1: Fluid inlet and outlet temperatures after 6 months for different heat loads

Heat Load
Deep Borehole Heat Exchanger Model m------

: . . Inlet T
A6 km DBHE is modelled, where the central pipe produces fluid 96.20  91.63 64.20 4591  36.77  18.48
(‘outlet’) and the annular space Injects fluid (‘inlet’) in a closed- Outlet N 28 69 66.19 50 95 e
loop system (Figure 1).

« After 6 months, outlet temperature (Tout) falls to 60 °C due to thermal
drawdown.
* For depths = 3 km, heat is extracted, but there is heat gain for < 1km.

Temp. [°C

* A transient numerical model was developed on OpenGeoSys e Assuming a minimum outlet temperature of 100 °C for electricity
using the ‘dual-continuum method’ with finite elements. generation, only 150 kW thermal power can be supplied. This
e Dual-continuum method: DBHE is modelled using 1D finite increases to 500 kW for a cut-off of 74 °C.
elements while surrounding rock employs 3D prism elements.  Low thermal power relative to geothermal power plants which
« Homogenous design Is adopted for parameterisation studies typically have =1 MW, installed power (approximately 10% of
over one heating season — 6 months. generated thermal power).

* Focus is on thermal power which can give initial estimates on
prospects for electricity generation.
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 There Is an increase In outlet temperature with increase in thermal
Y conductivity.
* The optimum mass flow rate is 8.33 kg/s for an inlet temperature of
10 °C.
Figure 1. Schematic of a deep Figure 2: Geometry and mesh set-up _
borehole heat exchanger (DBHE) Conclusion

« Using a cut-off outlet temperature of 100 °C for electricity generation,
around 150 kW thermal power can be supplied by the DBHE. A

Model Set-up and Parameters thermal power of 500kW can be obtained with a 74 °C cut-off.

* Model (Figure 2) adopts a surface temperature of 10.17 °C and a » Increasing the flow rate increases thermal output. However, the
geothermal gradient of 35.92 °C/km. optimum flowrate is 8.33 kg/s with an inlet temperature of 10 °C.
 Water is used as heat transfer fluid based on higher efficiency in  |nsulating the top part of the DBHE is likely to improve performance.
relation to diathermic oil (Alimonti and Soldo, 2016). * Most geothermal power plants have installed capacities =2 1 MW,
* A base thermal conductivity of 2.5 W/(m-K) is used and then varied. electricity which cannot be supplied by a very deep DBHE despite
* A Dbase mass flow rate of 8.33 kg/s is used and then varied. the huge cost of drilling to 6 km.
 Constant heat load and constant inlet temperature boundary * Drilling a 6 km conventional DBHE appears not to be viable
conditions (BC) have been adopted. economically; such DBHEs are probably more suited for repurposing
Infrastructure, such as oil and gas wells, which offsets drilling cost.
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