

Greenhouse gas emissions from biomass heating systems

Mirjam Röder, Patricia Thornley & Andrew Welfle

Tyndall Centre and School of Mechanical, Aerospace and Civil Engineering

ALL ENERGY, Glasgow, 5 May 2016

Introduction

- Many policy drivers for biomass are focused on the ability of biomass to reduce greenhouse gas (GHG) emissions
- Decarbonisation of the UK energy system requires decarbonisation of heating
- Identify the best use of biomass from a GHG perspective
- Identify the GHG balances of different bioenergy pathways

Renewable energy in 2014

7% of UK energy consumption from renewables

Heat generated from biomass

Total UK carbon budget and emission reductions until 2050

Figure 1: The recommended fifth carbon budget would continue emissions reduction on the path to the UK's 2050 target

Source: DECC (2015) Final UK greenhouse gas emissions national statistics: 1990-2013; DECC (2015) Provisional UK greenhouse gas emissions national statistics; DECC Energy Model; CCC analysis.

Notes: Data labels show reductions in annual emissions relative to 1990. Historical emissions are on a 'gross' basis (i.e. actual emissions). Projections and carbon budgets are on the current budget accounting basis: net carbon account excluding international aviation and shipping (IAS), but allowing for IAS to be included in the 2050 target.

Best use of biomass for energy

- UoM has evaluated the GHG balances of heating systems compared to other uses of biomass
- This is LCA work framed at addressing the question "What is the best us of our biomass resource"

Heating vs. other uses of biomass

Fig. 3 — Relative greenhouse gas reductions compared to the reference case.

Fig. 2 – Absolute greenhouse gas savings per unit of energy delivered.

- Pellet boiler pathway results in largest GHG burden; chip boiler pathway has substantially lower emissions
- Both of the electricity systems give very much higher GHG savings than the heating ones
- The district heating system gives the highest percentage reduction of greenhouse gases compared to the reference system

Heating vs. other uses of biomass

Fig. 4 - Greenhouse gas reductions per unit of biomass.

Fig. 3 — Relative greenhouse gas reductions compared to the reference case.

Fig. 2 – Absolute greenhouse gas savings per unit of energy delivered.

 Wood chip boiler for district heating delivers the greatest GHG reduction impact per unit of biomass; followed by large electricity systems

SUPERGEN Bioenergy Hub

GHG balances of biomass pathways

- UoM has carried out evaluation of different bioenergy pathways
- This is LCA work framed at addressing the question "What is the GHG impact of biomass resource-technology combinations compared to other ways of managing the resource and other ways of delivering energy?"

Analysis Comparators:.

Sustainability Target

Natural Gas GHG

Impact

Comparator, the UK's heat bioenergy GHG intensity target (CO₂eqv. / MWh) [20].

Comparator, the GHG intensity (CO₂^{eqv.} / MWh) of generating heat from natural gas [16].

UK willow heat bioenergy pathway

Key drivers of bioenergy GHG balances

	Embodied emissions associated with agrochemical inputs	Land emissions	Role of co-products	Carbon stocks	Land-use change emissions	Indirect land-use change emissions	Accessible yield of crop
Annual	++	++	++	-	+	+	++
crops							
Perennial	-	-	-	+	++	++	-
crops							
Forestry	-	-	+	++	-	-	-
systems							
Waste and	-	++	++	++	-	-	-
residue							
systems							
Algal	++		+				++
systems							

Emission uncertainties

Röder M et al. (2015) "How certain are greenhouse gas reductions from bioenergy? Life cycle assessment and uncertainty analysis of wood pellet-to-electricity supply chains from forest residues." Biomass and Bioenergy 79:50-63

Temporal aspects

- Point in time of CO₂ release and sequestration can be significantly different
- Forest management / biomass production is likely to be a another main driver of carbon emissions and overall emission budget

Beyond GHG emissions Environmental lifecycle impacts of domestic heating

Beyond GHG emissions Environmental lifecycle impacts of large scale heating

Implementation advice 1

- Biomass heating systems can deliver significant GHG reductions
- GHG reductions can be lower particularly if there is a low carbon counterfactual
 - e.g. high efficiency natural gas boiler or domestic heat system or high intensity production or processing/supply chain emissions
- Other environmental impacts may increase even when GHG impacts reduce

Implementation advice 2

- Not possible to accurately benchmark categories of biomass resource by their potential GHG performance
- Possible to identify specific processes/activities that enhance or reduce the GHG performance
- Pelleting improves combustion performance but reduces GHG savings

Implementation advice 3

- Important to fully understanding the climate mitigation policy objective when considering how to make the best use of bioenergy
- Climate policy focuses on relative GHG reductions when domestic heat and small and large scale electricity perform well, but for absolute emission reductions electricity is favoured rather than heat
- Important to appropriately frame the LCA research question – "off the shelf" calculators may give a "fair" technology comparison, but fail to take into account alternatives or interfaces and may result in inappropriate prioritisation

Contact details

Mirjam Röder

mirjam.roeder@manchester.ac.uk

+44 (0)161 275 4344

@Mirjam_Roeder

Linkedin Mirjam Roeder

Patricia Thornley <u>p.thornley@manchester.ac.uk</u>
Andrew Welfle <u>Andrew.welfle@manchester.ac.uk</u>

www.supergen-bioenergy.net

